Представленный ранее CW-передатчик на диапазон 40 метров имел выходную мощность 0.35 Вт. И хотя этого достаточно для проведения радиосвязей, с такой мощностью вам ответит далеко не каждый корреспондент. Поэтому сегодня мы рассмотрим схему, позволяющую усилить сигнал до полноценной QRP мощности 5 Вт.

Рано или поздно возникает потребность в полосно-пропускающем фильтре, имеющем полосу в пару сотен килогерц. Такой фильтр можно сделать, используя подходы, изученные нами ранее. Но выясняется, что фильтр, рассчитанный «в лоб» в каком-нибудь Elsie или Qucs, и имеющий идеальную АЧХ в LTspice, на практике имеет вносимые потери 10+ дБ. Это наводит на подозрения, что подобные фильтры делают как-то иначе.

Еще в июне я писал о том, что покупка нового генератора сигналов пока не входит в мои планы. Удивительно, как быстро все меняется. Раньше генератором сигналов я действительно пользовался нечасто, и возможностей MHS-5200A мне вполне хватало. Но когда дело дошло до активных фильтров, смесителей и апконвертеров, ограничения и недостатки MHS-5200A стали весьма ощутимы. Так в моей лаборатории появился Rigol DG4162.

Аудио-фильтры на пассивных компонентах в наши дни используют редко. RC-фильтры не могут обеспечить крутизны АЧХ больше 6 дБ на октаву. Этого недостатка лишены LC-фильтры. Однако на частотах 0-20 кГц им требуются катушки индуктивности на десятки-сотни миллигенри. Такие катушки делают, но они сравнительно дороги, а выбор номиналов ограничен. Поэтому обычно используют активные фильтры, речь о которых и пойдет далее.

Некоторое время назад мы научились делать аттенюаторы. Но каждый раз паять аттенюатор под очередную задачу неудобно. В связи с этим было решено вложить немного времени в изготовление ступенчатого аттенюатора (step attenuator). В русском языке его иногда называют переключаемым аттенюатором, шаговым аттенюатором, и так далее. Это все одно и то же.

Как мы выяснили в рамках статьи о диодном кольцевом смесителе, выход диодного смесителя богат нежелательными сигналами. Притом, мы не можем избавиться от них при помощи обычных фильтров. Фильтры отразят эти сигналы обратно в источник, что в случае со смесителем ничем хорошим не закончится. Поэтому необходимо использовать диплексер. Нам ничто не мешает сделать полноценный диплексер, но по возможности хотелось бы обойтись схемой попроще. Об одном из вариантов упрощенного диплексера далее и пойдет речь.

Ранее в статье Диодный кольцевой смеситель: теория и практика было показано, как смеситель частот может быть использован в качестве простого апконвертера. Сегодня на основе смесителя мы сделаем полноценный апконвертер, с собственным генератором, всеми необходимыми фильтрами, и так далее. Идеей проекта поделился Олег R1CBU, за что ему большое спасибо.

Генераторы шума могут быть применены в ряде задач, не исключая измерения АЧХ фильтров и КСВ антенн, генерации случайных чисел, контроля качества беспроводных систем, и так далее. В прошлый раз мы использовали готовый генератор шума с eBay. Теперь же предлагается разобраться, как работает генератор шума и попробовать сделать его самостоятельно.

Ранее в этом блоге был рассмотрен приемник прямого преобразования на диапазон 40 метров. Теперь пришло время сделать передатчик на этот диапазон. Мощность передатика будет небольшой. Естественным выбором в плане вида связи является телеграф, поскольку он эффективнее телефона. Кроме того, телеграфный передатчик сделать проще. От читателя ожидается знакомство со схемой приемника, так как в передатчике будут переиспользованы некоторые его компоненты.

В продолжение темы о генераторах (см предыдущие заметки раз, два и три) было решено попробовать вариант генератора, основанный на чипах стандартной логики. Подобный генератор может быть источником тактового сигнала в логических схемах, где таймер 555 не способен обеспечить требуемую частоту или стабильность. Безусловно, найдутся и другие применения.