В предыдущих статьях (первая, вторая) мы познакомились с активными фильтрами по топологии Саллена-Ки и Multiple Feedback. Но аудио-фильтры также могут быть сделаны на катушках индуктивности и конденсаторах. Сегодня мы рассмотрим пару схем таких фильтров и выясним, насколько хорошо они работают.

Такие свойства усилителей, как потребляемый ток, АЧХ и входной / выходной импеданс достаточно легко измерить. Нас также может интересовать, что будет с усилителем при работе с высоким КСВ. Как это проверить, тоже понятно. Однако есть и другие, не менее важные, параметры. В частности, это коэффициент шума, нелинейные искажения, компрессия усиления и интермодуляционные искажения. Сегодня мы разберемся, что означают все эти параметры и как их определить для данного усилителя.

Ключевым компонентом любого супергетеродинного приемника является фильтр промежуточной частоты. Это фильтр с полосой пропускания всего лишь 2000-3000 Гц (для SSB) или даже 50-500 Гц (для телеграфа), малыми вносимыми потерями и очень крутой АЧХ. Сделать такой фильтр, используя конденсаторы и катушки индуктивности, не представляется возможным, в основном из-за низкой добротности последних. Поэтому фильтры делают из кварцевых резонаторов.

Усилители с обратной связью (feedback amplifiers) используются для усиления ВЧ сигналов, когда требуется широкая полоса, контролируемое усиление, а также стабильный входной и выходной импеданс схемы. Такие усилители хорошо описаны в «Experimental Methods in RF Design» и активно используются на протяжении всей книги. Давайте разберемся, как их рассчитывать, а также какими свойствами, помимо уже названных, они обладают.

Si5351 — это управляемый по I2C генератор частот от 8 кГц до 160 МГц. Чип имеет три канала с выходным импедансом 50 Ом. Уровень сигнала может регулироваться примерно от 2 до 11 dBm. За счет сочетания цены и качества Si5351 очень популярен среди радиолюбителей. В частности, он используется в КВ-трансиверах uBITX и QCX, антенных анализаторах EU1KY и NanoVNA. Сегодня мы познакомимся с данным генератором поближе, а также поймем, как он может быть использован с микроконтроллерами STM32.

Иногда нужно знать точные характеристики кварцевого резонатора. Но даже если у вас есть даташит на конкретный кварцевый резонатор, в нем вы никогда не найдете нужную информацию. В силу производственных процессов даже два кварца из одной партии сильно отличаются друг от друга. Остается лишь один вариант — научиться измерять кварцы самостоятельно.

В очередном проекте было решено использовать STM32F103 (плату Blue Pill) и роторный энкодер в качестве одного из элементов управления. Благодаря заметке Микроконтроллеры STM32: основы использования таймеров, прерываний и ШИМ нам известно, что в мире STM32 эта задача решается при помощи таймеров. Однако само решение продемонстрировано не было. Давайте заполним этот пробел.

Автоматическая регулировка усиления или АРУ (automatic gain control, AGC) — эта функция в современных радиоприемниках, управляющая усилением сигнала в зависимости от его уровня. Благодаря АРУ слабые и сильные сигналы звучат примерно одинаково. Если вы слушаете слабый сигнал и вдруг на этой же частоте появится сильный сигнал, АРУ спасет вас от оглушения. Сегодня мы рассмотрим простую, но, тем не менее, хорошо работающую схему АРУ.

Как ранее отмечалось, компоненты приемника прямого преобразования и CW-передатчика могут быть объединены в трансивер. Пришло время убедиться, что это действительно так. Конечно, на деле все оказалось сложнее, чем в теории. Чтобы получить трансивер, недостаточно просто поставить рядом приемник и передатчик. Но обо всем по порядку.

Некоторое время назад мы познакомились с активными фильтрами нижних и верхних частот по топологии Саллена-Ки. Давайте рассмотрим еще одну схему. На этот раз это будет полосно-пропускающий фильтр, сделанный по другой топологии. Фильтр специально спроектирован для приема телеграфа.