Написание и отладка кода на ассемблере x86/x64 в Linux
17 августа 2016
Сегодня мы поговорим о программировании на ассемблере. Вопрос «зачем кому-то в третьем тысячелетии может прийти в голову писать что-то на ассемблере» раскрыт в заметке Зачем нужно знать всякие низкоуровневые вещи, поэтому здесь мы к нему возвращаться не будем. Отмечу, что в рамках поста мы сосредоточимся на вопросе компиляции и отладки программ на ассемблере. Сам же язык ассемблера заслуживает отдельного большого поста, а то и серии постов.
Если вы знаете ассемблер, то любая программа для вас — open source.
Народная мудрость.
Введение
Существует два широко используемых ассемблерных синтаксиса — так называемые AT&T-синтаксис и Intel-синтаксис. Они не сильно друг от друга отличаются и легко переводятся один в другой. В мире Windows принято использовать синтаксис Intel. В мире *nix систем, наоборот, практически всегда используется синтаксис AT&T, а синтаксис Intel встречается крайне редко (например, он используется в утилите perf). Поскольку Windows, как известно, не существует, далее мы сосредоточимся на правильном AT&T-синтаксисе :)
Компиляторов ассемблера существует много. Мы будем использовать GNU Assembler (он же GAS, он же /usr/bin/as). Скорее всего, он уже есть вашей системе. К тому же, если вы пользуетесь GCC и собираетесь писать ассемблерные вставки в коде на C, то именно с этим ассемблером вам предстоит работать. Из достойных альтернатив GAS можно отметить NASM и FASM.
Наконец, язык ассемблера отличается в зависимости от архитектуры процессора. Пока что мы сосредоточимся на ассемблере для x86 (он же i386) и x64 (он же amd64), так как именно с этими архитектурами приходится чаще всего иметь дело. Впрочем, ARM тоже весьма распространен, главным образом на телефонах и планшетах. Еще из сравнительно популярного есть SPARC и PowerPC, но шансы столкнуться с ними весьма малы. Отмечу, что x86 и x64 можно было бы рассматривать отдельно, но эти архитектуры во многом похожи, поэтому я не вижу в этом большого смысла.
«Hello, world» на int 0x80
Рассмотрим типичный «Hello, world» для архитектуры x86 и Linux:
msg:
.ascii "Hello, world!\n"
.set len, . - msg
.text
.globl _start
_start:
# write
mov $4, %eax
mov $1, %ebx
mov $msg, %ecx
mov $len, %edx
int $0x80
# exit
mov $1, %eax
xor %ebx, %ebx
int $0x80
Компиляция:
as --32 hello-int80.s -o hello-int80.o
ld -melf_i386 -s hello-int80.o -o hello-int80
Коротко рассмотрим первые несколько действий, выполняемых программой: (1) программа начинает выполнение с метки _start, (2) в регистр eax кладется значение 4, (3) в регистр ebx помещается значение 1, (4) в регистр ecx кладется адрес строки, (5) в регистр edx кладется ее длина, (6) происходит прерывание 0x80. Так в мире Linux традиционно происходит выполнение системных вызовов. Конкретно int 0x80 считается устаревшим и медленным, но из соображений обратной совместимости он все еще работает. Далее мы рассмотрим и более новые механизмы.
Нетрудно догадаться, что eax — это номер системного вызова, а ebx, ecx и edx — его аргументы. Какой системный вызов имеет какой номер можно подсмотреть в файлах:
/usr/include/x86_64-linux-gnu/asm/unistd_32.h
# для x64
/usr/include/x86_64-linux-gnu/asm/unistd_64.h
Следующая строчка из файла unistd_32.h:
… как бы намекает нам, что производится вызов write. В свою очередь, из man 2 write
мы можем узнать, какие аргументы этот системный вызов принимает:
ssize_t write(int fd, const void *buf, size_t count);
То есть, рассмотренный код эквивалентен:
write(stdout, "Hello, world!\n", 14)
Затем аналогичным образом производится вызов:
exit(0)
Совсем не сложно!
В общем случае системный вызов через 0x80 производится по следующим правилам. Регистру eax присваивается номер системного вызова из unistd_32.h. До шести аргументов помещаются в регистры ebx, ecx, edx, esi, edi и ebp. Возвращаемое значение помещается в регистр eax. Значения остальных регистров при возвращении из системного вызова остаются прежними.
Выполнение системного вызова через sysenter
Начиная с i586 появилась инструкция sysenter, специально предназначенная (чего нельзя сказать об инструкции int) для выполнения системных вызовов.
Рассмотрим пример использования ее на Linux:
msg:
.ascii "Hello, world!\n"
len = . - msg
.text
.globl _start
_start:
# write
mov $4, %eax
mov $1, %ebx
mov $msg, %ecx
mov $len, %edx
push $write_ret
push %ecx
push %edx
push %ebp
mov %esp, %ebp
sysenter
write_ret:
# exit
mov $1, %eax
xor %ebx, %ebx
push $exit_ret
push %ecx
push %edx
push %ebp
mov %esp, %ebp
sysenter
exit_ret:
Сборка осуществляется аналогично сборке предыдущего примера.
Как видите, принцип тот же, что при использовании int 0x80, только перед выполнением sysenter требуются поместить в стек адрес, по которому следует вернуть управление, а также совершить кое-какие дополнительные манипуляции с регистрами. Причины этого более подробно объясняются здесь.
Инструкция sysenter работает быстрее int 0x80 и является предпочтительным способом совершения системных вызовов на x86.
Выполнение системного вызова через syscall
До сих пор речь шла о 32-х битных программах. На x64 выполнение системных вызовов осуществляется так:
msg:
.ascii "Hello, world!\n"
.set len, . - msg
.text
.globl _start
_start:
# write
mov $1, %rax
mov $1, %rdi
mov $msg, %rsi
mov $len, %rdx
syscall
# exit
mov $60, %rax
xor %rdi, %rdi
syscall
Собирается программа таким образом:
ld -melf_x86_64 -s hello-syscall.o -o hello-syscall
Принцип все тот же, но есть важные отличия. Номера системных вызовов нужно брать из unistd_64.h, а не из unistd_32.h. Как видите, они совершенно другие. Так как это 64-х битный код, то и регистры мы используем 64-х битные. Номер системного вызова помещается в rax. До шести аргументов передается через регистры rdi, rsi, rdx, r10, r8 и r9. Возвращаемое значение помещается в регистр rax. Значения, сохраненные в остальных регистрах, при возвращении из системного вызова остаются прежними, за исключением регистров rcx и r11.
Интересно, что в программе под x64 можно одновременно использовать системные вызовы как через syscall, так и через int 0x80.
Отладка ассемблерного кода в GDB
Статья была бы не полной, если бы мы не затронули вопрос отладки всего этого хозяйства. Так как мы все равно очень плотно сидим на GNU-стэке, в качестве отладчика воспользуемся GDB. По большому счету, отладка не сильно отличается от отладки обычного кода на C, но есть нюансы.
Например, вы не можете так просто взять и поставить брейкпоинт на процедуру main. Как минимум, у вас попросту нет отладочных символов с информацией о том, где эту main искать. Решение заключается в том, чтобы самостоятельно определить адрес точки входа в программу и поставить брейкпоинт на этот адрес:
Увидим что-то вроде:
Entry point: 0x4000b0
[...]
Далее говорим:
r
Какого-либо исходного кода у нас тоже нет, поэтому команда l
работать не будет. Сами ассемблерные инструкции и есть исходный код! Так, например, можно посмотреть следующие 5 ассемблерных инструкций:
По понятным причинам, переход к очередной строчке кода при помощи команд n
или s
работать не будет. Вместо этих команд следует использовать команды перехода к следующей инструкции — ni
, si
, и так далее.
Смотреть и изменять значения переменных мы тоже не можем. Однако ничто не мешает смотреть и изменять значения регистров:
p/x $rcx
p $xmm1
set $r15 = 0x123
Наконец, стектрейсы нам тоже недоступны. Но ничто не мешает, например, посмотреть 8 ближайших значений на стеке:
По большому счету, это все отличие от отладки программы на C при наличии исходников. Кстати, вы можете легко посмотреть, в какой ассемблерных код транслируется ваш код на C, одним из следующих способов:
objdump -d ./myprog
Как альтернативный вариант, можно воспользоваться Hopper или подобным интерактивным дизассемблером.
Внезапно отладка программы, собранной без -g
и/или с -O2
, перестала казаться таким уж страшным делом, не так ли?
Заключение
В качестве домашнего задания можете попытаться написать программу на ассемблере, выводящую переменные окружения, а также переданные ей аргументы командной строки.
Примите во внимание, что в Linux есть еще как минимум два способа сделать системный вызов — через так называемые vsyscall (считается устаревшим, но поддерживается для обратной совместимости) и VDSO (пришедший ему на замену). Эти способы основаны на отображении страницы ядра в адресное пространство процесса и призваны ускорить выполнение системных вызовов, не требующих проверки привилегий и других тяжелых действий со стороны ядра системы. В качестве примера вызова, который может быть ускорен таким образом, можно привести gettimeofday. К сожалению, рассмотрение vsyscall и VDSO выходит за рамки данного поста. Больше информации о них вы найдете по приведенным ниже ссылкам.
Ссылки по теме:
- Хорошее объяснение vsyscall и VDSO;
- Объяснение ELF Auxiliary Vectors;
- Книга «Learning Linux Binary Analysis»;
Кроме того, вас могут заинтересовать статьи, посвященные ассемблеру, в замечательных блогах alexanius-blog.blogspot.ru и 0xax.blogspot.ru.
Дополнение: Шпаргалка по основным инструкциям ассемблера x86/x64
Вы можете прислать свой комментарий мне на почту, или воспользоваться комментариями в Telegram-группе.