Самодельный траповый диполь: теория и практика

25 февраля 2019

В рамках статьи Самодельный диполь: теория и практика мы изготовили нашу первую самодельную антенну. Существенным минусом данной антенны является тот факт, что в один момент времени она может работать только в одном радиолюбительском диапазоне. Сегодня мы выясним, как устранить этот недостаток, добавив в антенну трапы.

Теория

Идею иллюстрирует следующая картинка:

Схема трапового диполя

Допустим, мы хотим сделать диполь на диапазоны 20 и 40 метров. К балуну крепятся плечи на диапазон 20 метров, два провода по ~5 метров. Свободные концы подключаются к LC-контурам с резонансной частотой около 14.150 МГц, центр 20-и метрового диапазона. Затем к концам контуров подключаются провода, увеличивающие общие длины плеч до ~10 метров, чтобы получились плечи на диапазон 40 метров. Если нужно, чтобы антенна работала больше, чем на двух диапазонах, процедура повторяется — добавляется еще пара LC-контуров с резонансной частотой около 7.100 МГц, и к ним еще провода.

На своей резонансной частоте LC-контур имеет высокое сопротивление. Таким образом, при передаче сигнала с частотой, близкой к 14.150 МГц, LC-контур как бы размыкает плечо диполя, и антенна работает, как обычный диполь на 20 метров. На частотах, близких к 7.100 МГц, контур не резонирует и имеет низкое сопротивление. Поэтому на этих частотах антенна работает, как диполь на 40 метров. LC-контур является как бы ловушкой для сигналов с заданной частотой, поэтому его и называют trap.

Следует однако учитывать, что в диапазоне 40 метров трап на 20 метров будет работать, как удлиняющая катушка. Поэтому в данном диапазоне резонанс будет уже, чем у полноразмерного диполя на 40 метров. Если добавить в антенну еще один диапазон, например, 80 метров, при работе в этом диапазоне получится уже две удлиняющие катушки, поэтому резонанс будет еще уже. Другими словами, каждый добавленный диапазон имеет все более узкий интервал рабочих частот.

Трапы для антенны можно сделать множеством способов. Очень практичный вариант изготовления трапов из коаксиального кабеля был предложен оператором Robert Johns, W3JIP в статье «Coaxial Cable Antenna Traps», опубликованной в журнале QST в мае 1981 года. Его идея была улучшена оператором Robert Sommer, N4UU в статье «Optimizing Coaxial-Cable Traps», опубликованной в журнале QST за декабрь 1984 года. На основе этих и других работ оператором John DeGood, NU3E была написана и выложена в сеть статья An Attic Coaxial-Cable Trap Dipole for 10, 15, 20, 30, 40, and 80 Meters, которая дополнялась с 1998-го по 2010-ый год. На эту статью я и опирался.

Примечание: Архивы радиолюбительских журналов проще всего найти на торрент-трекерах.

В разрезе трап выглядит следующим образом:

Трап из коаксиального кабеля

Коаксиальный кабель RG58 наматывается виток к витку на кусок пластиковой трубы. Затем экран кабеля с одного конца припаивается к жиле с другого конца согласно схеме. Оставшиеся жила и экран соединяются с плечом антенны. Таким образом, из кабеля получается как бы двойная катушка индуктивности. Плюс к этому, кабель обладает погонной емкостью около 100 пФ на 1 метр, отсюда и возникает емкость. По утверждению W3JIP и N4UU, такие трапы работают на мощности до 1000 Вт.

Практика

Было решено сделать траповый диполь на диапазоны 20, 40 и 80 метров, поскольку именно на этих диапазонах я работаю чаще всего. (Забегая немного вперед, скажу, что получившаяся антенна резонирует и на других диапазонах.) Таким образом, требовалось изготовить две пары трапов — для диапазонов 20 и 40 метров.

Я использовал диаметры труб и количество витков кабеля, приведенные в статье NU3E. В метрической системе эти размеры следующие.

  • Для 20 метров: 6 витков, труба — D = 41.30 мм, L = 45 мм;
  • Для 40 метров: 8 витков, труба — D = 57.15 мм, L = 50 мм;

Трубы соответствующих диаметров и длины были напечатаны на 3D-принтере пластиком PLA. Таким, к примеру, получился трап на 20 метров:

Самодельный трап на 20 метров

Для проверки трапов был использован генератор сигналов MHS-5200A, осциллограф и нагрузка 50 Ом. Как и ожидалось, в окрестностях резонансной частоты амплитуда сигнала уходит практически в ноль.

Если у вас нет 3D-принтера, осциллографа, генератора сигналов и труб точно такого же диаметра, это не страшно. Точный диаметр трубы и количество витков кабеля не играют большой роли, лишь бы трап резонировал около требуемой частоты. Притом погрешность в сотню-другую килогерц вполне простительна. Вместо генератора сигнала можно использовать генератора Клаппа с переменными емкостями и индуктивностями. Что же до зависимости амплитуды сигнала от частоты, ее покажет ваш трансивер. Абсолютные значения видеть не требуется. Достаточно только знать, на какую частоту пришелся минимум.

Длины плеч я подбирал таким образом. Берется диполь с плечами чуть больше 5 метров и безо всяких трапов. Затем плечи обрезаются до тех пор, пока КСВ во всем диапазоне 20 метров не будет около 1. За один раз я обрезал где-то по 25 см. Затем к каждому плечу прикреплется по трапу на 20 метров и еще провод для следующего диапазона. Проверяем, что КСВ на 20 метрах все еще в порядке, при необходимости удлиняем-укорачиваем кусок провода между балуном и трапом. Если на 20 метрах все в порядке, принимаемся за 40 метров. Снова укорачиваем антенну до тех пор, пока КСВ на 40 метрах не будет около 1. При этом на работу антенны в 20 метрах это укорачивание уже не влияет. В противном случае, с вашими трапами что-то не так. Закончив с 40 метрами, повторяем процедуру для 80 метров.

Отмечу, что процесс этот не быстрый. Антенну приходится часто укорачивать, затем опускать, нести в дом, паять, снова нести на улицу, поднимать. Настройка заняла у меня полный выходной день. Главное — делать все спокойно и не спеша, тогда процесс уверенно сходится. В итоге были получены следующие размеры:

  • От балуна до трапа на 20 метров: 485 см;
  • От трапа на 20 метров до трапа на 40 метров: 362 см;
  • От трапа на 40 метров до конца плеча: 530 см;

Таким образом, общая длина антенны составила 27.5 метров, чуть длиннее полноразмерного диполя на 40 метров. Как уже было отмечено, для диапазонов 40 и 80 метров трапы работают, как удлиняющие катушки. За счет этого антенна получилась короче простого диполя на 80 метров. Отмечу, что приведенные цифры справедливы для конфигурации inverted vee, с высотой центральной части от земли около 6-7 метров и минимальной высоты плеч от земли 1-2 метра. Для другой высоты мачты может потребоваться корректировка размеров.

Также отмечу, что погрешность в пару сантиметров здесь ни на что не влияет. Но для успешной работы антенны она должна быть как можно более симметричной. В том числе, трапы должны быть повернуты к балуну одной и той же стороной. У меня трапы на оба диапазона повернуты экраном к балуну.

После настройки все места пайки проводов были изолированы при помощи термоусадочных трубок. Для трапов были напечатаны заглушки в виде дисков. Эти заглушки были приклеены к трапам при помощи супер клея. Изоляторы также были напечатаны на 3D-принтере. Затем, аналогично балуну, трапы и изоляторы были покрыты лаком Plastik 71 в два слоя. Окончательный вид антенны в свернутом состоянии:

Самодельный траповый диполь

На солнечном свете лак выглядит синеватым. В доме он абсолютно прозрачный.

Полученные результаты

Время, потраченное на изготовление и настройку антенны, окупилось с лихвой!

На 20 метрах КСВ не превосходит 1.5 во всем диапазоне. На интервале от 14.160 до 14.350 МГц он равен 1. В диапазоне 40 метров КСВ не превосходит 1.7, притом в интервале от 7.040 до 7.200 МГц он не превосходит 1.5, а на интервале от 7.090 до 7.146 МГц КСВ равен 1. На всем диапазоне 80 метров КСВ не превосходит 3. В интервале от 3.565 до 3.725 МГц КСВ меньше 2, в интервале от 3.600 до 3.690 МГц — меньше 1.5, а в интервале от 3.628 до 3.660 МГц КСВ равен 1.

Кроме того, оказалось, что антенна резонирует и на других радиолюбительских диапазонах. Во всем диапазоне 10 метров КСВ меньше 2, на интервале от 28.000 до 29.100 МГц он не превышает 1.8, а на интервале от 28.260 до 28.750 МГц — не превышает 1.5. Во всем диапазоне 12 метров значение КСВ составляет около 1.7. На 15 метрах КСВ не превышает 2, и даже опускается до 1.8 на интервале от 21.000 до 21.120 МГц. В диапазонах 17 и 30 метров КСВ равен 2. На всякий случай я проверил и диапазон 160 метров, но там с этой антенной делать нечего.

Дополнение: По совету Михаила RV3MP я перепроверил измерения, удлинив кабель на 3 метра. КСВ при этом остался прежним на всех диапазонах.

Антенна была протестирована только в диапазонах 17, 20, 40 и 80 метров, поскольку на момент написания этих строк в прочих диапазонах активности я не наблюдал. Передача велась в режиме SSB на мощности 100 Вт.

Диапазон 17 метров является не самым популярным среди радиолюбителей. Тем не менее, мне удалось провести QSO с операторами из Болгарии (1500 км), Франции (2300 км) и несколькими операторами из Италии (2100 км). Напомню, что это с КСВ равным 2. Было отчетливо, хотя и негромко, слышно оператора из Объединенных Арабских Эмиратов (3700 км). Но к нему была огромная очередь, и пробиться не получилось.

На 20 метрах были проведены QSO с операторами из Италии (2230 км), Нидерландов (2000 км), Германии (2000 км), Македонии (1900 км), Турции (1700 км), Румынии (1400 км), Болгарии (1700 км), Кипра (2300 км), Норвегии (1800 км) и Франции (2700 км), а также нескольких городов России. Наиболее удаленным городом оказался Шали (1500 км).

В диапазоне 40 метров мне ответили радиолюбители из Швейцарии (2150 км), Украины (950 км), Польши (1100 км), Греции (2100 км) и Испании (3450 км). Само собой разумеется, также была проведена куча QSO с операторами из России. По удаленности от меня победили Краснодар и Севастополь (1200 км).

На 80 метрах были проведены QSO с коротковолновиками, проживающими в Беларуси (670 км), Украине (830 км) и Киргизии (3000 км). Также было очень много городов России, среди которых самым удаленным оказался Сургут (2150 км). QSO с Минском (670 км) и Харьковом (650 км) были проведены при значении КСВ больше 2.

Заключение

Я очень доволен полученными результатами. С такой антенной вы с кем-нибудь да свяжетесь в любое время суток, в любой день недели. Для перехода между диапазонами не нужно ничего перестраивать, просто берешь, и переходишь. Антенна получилась короче диполя на 80 метров, что тоже плюс. К тому же, антенна довольна компактная и легкая, что делает ее пригодной для использования в походах.

По деньгам вышли примерно те же 25$, что и за диполь без трапов. Правда, я забыл замерить, сколько коаксиального кабеля мне понадобилось для трапов. Пусть будет метров 10. В этом случае общая стоимость антенны не превышает 30$. Это все равно существенно меньше стоимости любой готовой антенны.

Интересно, что используя описанные в данной статье принципы, можно изготовить и вертикальную многодиапазонную антенну. Заинтересованным читателям предлагается провести соответствующий эксперимент в качестве упражнения.

Исходники 3D-моделей трапов и изоляторов для OpenSCAD, а также скомпилированные STL-файлы, вы найдете здесь. Как всегда, буду рад любым вашим вопросам и дополнениям.

Метки: , , .

Понравился пост? Узнайте, как можно поддержать развитие этого блога.

Также подпишитесь на RSS, Facebook, ВКонтакте, Twitter или Telegram.