Как опознать неизвестное ферритовое кольцо

10 февраля 2020

Рано или поздно любой радиолюбитель сталкивается с необходимостью опознать неизвестное ферритовое кольцо. Возможно, кольцо просто долго пролежало в коробке, и вы забыли, из какого оно материала. А может быть, вы хотите перепроверить за продавцом, что он продал вам то, что нужно. Учитывая, что какие-нибудь FT240-43 и FT240-31 внешне практически неразличимы, их немудрено перепутать безо всякого злого умысла. Давайте же выясним, как с неплохой точностью опознать неизвестное кольцо.

Примечание: Если вы недавно стали следить за блогом, или просто проходили мимо, то, возможно, не понимаете, о каких таких ферритовых кольцах речь. Примеры их использования вы найдете в заметках Самодельный диполь: теория и практика, Самодельный балун по току 1:4, и далее по ссылкам.

Для начала рассмотрим немного другую задачу. Есть кольцо с внешним диаметром D1, внутренним диаметром D2, высотой h и известной магнитной проницаемостью μ. На кольцо намотана катушка из N витков. Спрашивается, какова будет индуктивность катушки? Эмпирические формулы были найдены в статье Расчет катушки на ферритовом кольце на сайте coil32.ru, которая в свою очередь ссылается на книгу 1986-го года «Справочник по расчетам на микрокалькуляторах», автор Дьяконов В.П.

Индуктивность в микрогенри для D1/D2 ≥ 1.75:

Индуктивность в микрогенри для D1/D2 > 1.75

… и для случая D1/D2 < 1.75:

Индуктивность катушки для D1/D2 < 1.75

Все размеры в приведенных формулах — в миллиметрах.

Так вот, имея перед глазами эти формулы, нетрудно придумать алгоритм определения ферритового кольца. Замеряем его размеры. Наматываем катушку и измеряем ее индуктивность. По формулам определяем μ. Затем сверяемся с даташитами на ферритовые кольца в поисках похожих значений.

Чтобы не считать руками, был написан скрипт на Python:

#!/usr/bin/env python3
# vim: set ai et ts=4 sw=4:

import argparse
from math import log

parser = argparse.ArgumentParser(
    description='Ferrite core permeability calculator'
    )
parser.add_argument(
    '-t', metavar='T', type=float, required=True,
    help='Core thickness, mm')
parser.add_argument(
    '-di', metavar='Di', type=float, required=True,
    help='Core internal diameter, mm')
parser.add_argument(
    '-de', metavar='De', type=float, required=True,
    help='Core external diameter, mm')
parser.add_argument(
    '-n', metavar='N', type=float, required=True,
    help="Number of turns (10-15 should be fine)")
parser.add_argument(
    '-l', metavar='L', type=float, required=True,
    help='Meadured inducatence, uH')
args = parser.parse_args()

T = args.t
Di = args.di
De = args.de
N = args.n
L = args.l

if De/Di >= 1.75:
    u = L / (0.0002*T*N*N*log(De/Di))
else:
    u = (L * (De + Di)) / (0.0004*T*N*N*(De-Di))

Al = 1000*L/(N*N)

print("Initial magnetic permeability: {}".format(u))
print("Inductance factor of the core (Al): {}".format(Al))

То, что мы в этой статье называем просто μ, в даташитах обычно обозначается μi и называется начальной магнитной проницаемостью (initial magnetic permeability). Дело в том, что вообще-то μ является функцией от частоты. В даташитах указывается магнитная проницаемость для частоты 10 кГц. Некоторые производители вместо μi указывают фактор индуктивности, обозначаемый AL. Фактор индуктивности вычисляется из индуктивности катушки и числа витков по незамысловатой формуле, что используется в скрипте.

Давайте же опознаем неизвестное кольцо:

Опознание неизвестного ферритового кольца

Для определения μ скармливаем скрипту размеры кольца, число витков и измеренную индуктивность катушки:

$ ./permeability.py -t 12.5 -di 35 -de 61 -n 10 -l 107.4
Initial magnetic permeability: 793.1076923076924
Inductance factor of the core (Al): 1074.0

Открываем табличку на сайте fair-rite.com и ищем материал с близким значением магнитной проницаемости. Приходим к выводу, что перед нами скорее всего 43-я смесь, для которой μ = 800 ± 20%.

Давайте попробуем на еще одном кольце:

$ ./permeability.py -t 12.5 -di 35 -de 61 -n 10 -l 239
Initial magnetic permeability: 1764.923076923077
Inductance factor of the core (Al): 2390.0

Тут чуточку сложнее, потому что чисто по магнитной проницаемости это может быть как 15-ая смесь, так и 31-ая, обе с μ = 1500 ± 20%. Но во-первых, я знаю, что отродясь не покупал кольца на 15-ой смеси. Во-вторых, беглый поиск в интернете показывает, что кольца на 15-ой смеси не бывают такими большими и обычно покрашены в красный цвет. Делаем вывод, что перед нами кольцо на 31-ой смеси.

Само собой разумеется, ничто не мешает использовать и другую информацию. Например, о плотности материала. Имеющееся у меня кольцо FT240-43 весит 125 г. Кольцо FT240-31 — полегче, около 116 г. Кроме того, если приглядеться, можно заметить небольшие отличия в цвете и текстуре материалов — 43-ий материал темно-асфальтового цвета, а 31-ый чуточку светлее, скорее темно-серый. Ну или, по крайней мере, это справедливо в отношении имеющихся у меня экземпляров.

Я проверял описанную методу и на других кольцах, с ними она также сработала. Конечно же, такой подход не универсален. Но если вы помните, какие кольца обычно используете в своих проектах, и вам нужно только отличить одно кольцо от другого, то способ работает весьма неплохо.

Ну и напоследок маленький совет. Когда вы опознали кольцо, обязательно подпишите его. Для этого хорошо подходит белая замазка. Тогда кольцо не придется опознавать заново.

Дополнение: Вас также могут заинтересовать посты Определяем добротность и частоту собственного резонанса катушки индуктивности, Самодельный вариометр из клея-карандаша и Измеряем параметры кварцевых резонаторов.

Метки: .


Вы можете прислать свой комментарий мне на почту, или воспользоваться комментариями в Telegram-группе.