← На главную

Подключаем FT-891 к осциллографу и анализатору спектра

В умных книжках можно найти описание различных тестов трансиверов и усилителей. Обычно они проводятся с использованием двухтонального генератора и осциллографа и/или анализатора спектра. Давайте же попробуем выяснить, как проводятся такие тесты и что они показывают.

Что тестируем?

Если перебирать все мыслимые комбинации трансиверов, цифровых интерфейсов, мощности, радиолюбительских диапазонов, модуляции и так далее, то никакого времени не хватит, да и статья выйдет затянутой. Поэтому в рамках поста мы сосредоточимся только на одном варианте. Тестировать будем трансивер Yaesu FT-891 с мощностью 50 Вт в радиолюбительском диапазоне 40 метров. Для подачи аудиосигнала в трансивер будет использован самодельный интерфейс для цифровых видов связи. Сигнал будем генерировать в Audacity. В рамках данной статьи мы рассмотрим лишь пару наиболее распространенных и простых тестов.

Самодельный ответвитель

Само собой разумеется, подавать 50 Вт напрямую в осциллограф и тем более в анализатор спектра мы не можем. Нам нужно устройство, которое брало бы от этих 50 Вт небольшую часть, и желательно без искажений. Такое устройство называется ответвитель (не путать с направленным ответвителем!), или в английском языке RF sampler. Ответвитель несложно сделать самому:

Самодельный ответвитель

В сущности, это металлическая пластинка или проволочка, которая подведена близко к жиле кабеля, но не касается ее. За счет емкостной связи часть энергии с основной линии (UHF разъемы слева и справа) попадает на отвод (BNC разъем сверху). Если слева подключить трансивер, справа – эквивалент нагрузки, а отвод – к осциллографу или анализатору спектра, то конструкция в целом работает подобно аттенюатору на большую мощность.

Измерим зависимость аттенюации от частоты при помощи следящего генератора:

Зависимость аттенюации сигнала от частоты

Здесь пурпурный график – это аттенюация, а желтый показывает уровень шума. На частотах от 1.8 МГц до 30 МГц имеем от -65 дБ до -52 дБ. На 144-146 МГц видим порядка -40 дБ. Теперь прикинем. Один киловатт соответствует 60 dBm. DSA815-TG может принимать не более 20 dBm. Таким образом, на КВ и в диапазоне 160 метров мы можем анализировать киловаттные усилители, при условии, что изготовим подходящий эквивалент нагрузки. На двухметровом диапазоне я бы не подавал в ответвитель больше 100 Вт (50 dBm).

Помимо аттенюации также не забываем проверить КСВ. Для этого был использован антенный анализатор EU1KY и маломощный эквивалент нагрузки, имеющий КСВ ≤ 1:1 до 450 МГц. Из заметки про NanoVNA вы можете помнить, что найти такие эквиваленты нагрузки не так-то просто. Итак, подключаем его к антенному анализатору через ответвитель. До 30 МГц видим КСВ 1, все хорошо. На 145 МГц значение КСВ составило 1.2. Сойдет. В диапазоне 70 сантиметров был получен КСВ 2. На этом диапазоне пользоваться ответвителем не стоит.

Fun fact! Ответвители часто применяют в телевидении, где от магистральной линии нужно отводить сигнал конкретному абоненту.

Дополнение: Вместо ответвителя можно воспользоваться самодельным аттенюатором 30 dB на 100 Вт.

Тест CW сигнала

Посмотрим, что передает трансивер в эфир, когда мы работаем в телеграфе:

Осциллограмма CW сигнала

Отвод подключается к осциллографу напрямую, безо всякого согласования импеданса. Сигнал и так слабенький. Если его амплитуду еще и на два поделить, против нас начнет играть вертикальное разрешение осциллографа.

Заметьте, что на осциллограмме нет никаких лишних всплесков или чего-то такого, а края у несущей как бы немного срезаны. Это делается специально. Иначе будут излучаться гармоники, которые не только зря расходуют энергию, но и засоряют эфир. За предание CW сигналу правильной формы в трансивере отвечает специальный компонент, waveshaping circuit.

А так выглядит спектр сигнала:

Спектр CW сигнала

Просто загляденье!

Интермодуляционные искажения

Интермодуляционные искажения, ИМИ (intermodulation distortion, IMD) – искажения сигнала, возникающие в усилителе в связи с его нелинейностью. Если эти искажения велики, трансивер излучает существенную часть энергии за пределами полосы сигнала. Если повезет, то энергия просто расходуется впустую. Если нет, то мы еще и создадим помехи другим радиолюбителям.

Для измерения IMD в трансивер подается двухтональный аудиосигнал. При этом тона не должны быть кратны друг другу. Например, 1000 Гц и 2000 Гц не подходят. Я использовал 1550 Гц и 2150 Гц. Для генерации сигнала в Audacity создаем два трека через меню Tracks → Add New → Mono Track. Синусоидный сигнал заданной частоты генерируется в меню Generate → Tone. У нас два трека, поэтому амплитуду сигнала выбираем равной 0.5.

Трансивер переводим в режим DATA. Напомню, что он представляет собой SSB (USB) с полностью отключенными эквалайзерами, компрессорами и так далее, которые только помешают нашим измерениям. Подаем сигнал, и в осциллографе должны увидеть такую картину:

Осциллограмма двухтонального сигнала в SSB

Перед вами классическая осциллограмма двухтонального сигнала в SSB. Если приглядеться к амплитуде сигнала, можно увидеть практически идеальную синусоиду. Это говорит о том, что в сигнале мало искажений.

Если мы увеличим громкость, осциллограмма станет такой:

Искаженный SSB сигнал

Видим как бы синусоиду, но со срезанной верхушкой. Это говорит нам о том, что сигнал сильно искажен. Возможны и другие варианты искажений. Синусоида может быть как бы завалена на бок или не проходить через ось OX. Все, что отличается от приведенной выше хорошей картинки свидетельствует о высоком IMD.

Осциллограф позволяет оценить IMD на глаз, но более точную картину нам покажет анализатор спектра. Вернем громкость как было и посмотрим на спектр сигнала:

Спектр двухтонального сигнала в SSB

Здесь пики 3 и 4 представляют собой наш сигнал, а пики 1, 2 и все остальные – это интермодуляционные продукты. Мы видим, что последние на ~30 дБ ниже основных сигналов. Согласно The ARRL Handbook, 30 дБ является типичным значением для современных трансиверов, 35 дБ считается очень хорошим результатом, а 25 дБ – посредственным (mediocre) значением, что бы авторы не имели в виду.

Заметьте также, что интермодуляционные продукты затухают по мере удаления от основного сигнала. Может быть так, что множество пиков выходят сильно за пределы полосы сигнала, и не особо спешат затухать. Такой результат неприемлем, даже если каждый отдельный пик идет с уровнем -30 дБ по сравнению с основным сигналом.

Заключение

Как вы можете видеть, проверить качество сигнала и убедиться, что он никому не создает помех в эфире, не так уж и сложно. Анализатор спектра в этом деле будет полезен, но не является обязательным. Для проверки достаточно только осциллографа. Если нет осциллографа, то проверить сигнал необходимо хотя бы с помощью знакомого радиолюбителя.

Увы, многие радиолюбители подобных проверок не делают. Для CW и SSB это не критично, поскольку можно просто положиться на производителя трансивера. Однако это важно для цифровых видов связи. Теперь мы понимаем, откуда на частотах BPSK и FT8 берутся всевозможные паразитные сигналы.

Само собой разумеется, есть и другие метрики, характеризующие приемники, передатчики, усилители и генераторы. Например, Total Harmonic Distortion (THD), Signal to Noise And DIstortion (SINAD), Adjacent Channel Power Ratio (ACPR), динамический диапазон по блокированию (Blocking Dynamic Range, BDR), чувствительность и другие. Увы, они выходят за рамки данного поста.

Дополнение: Измеряем параметры усилителей с помощью анализатора спектра и генератора сигналов